Well Come to Professional Programmers

Learning Goal

Learning is a process to acquire, enhance, or make changes in one's knowledge. Learning Module presents essential and masks non-essential pieces of knowledge. It is self paced and presents required links to important examples and related terminologies essentially required for examination centric study. The module is focused on examination system in vogue in Pakistan and helps student acquire maximum marks in limited time of study.

Sunday, April 25, 2010

Mathematical Functions



Mathematical Functions



Mathematical functions not intrinsic to GW-BASIC can be calculated as follows:












































Function GW-BASIC Equivalent
Secant SEC(X)=1/COS(X)
CosecantCSC(X)=1/SIN(X)
CotangentCOT(X)=1/TAN(X)
Inverse SineARCSIN(X)=ATN(X/SQR(-X*X+1))
Inverse CosineARCCOS(X)=ATN (X/SQR(-X*X+1))+ PI/2
Inverse SecantARCSEC(X)=ATN(X/SQR(X*X-1))+SGN(SGN(X)-1)* PI/2
Inverse CosecantARCCSC(X)=ATN(X/SQR(X*X-1))+SGN(X)-1)* PI/2
Inverse CotangentARCCOT(X)=ATN(X)+ PI/2
Hyperbolic SineSINH(X)=(EXP(X)-EXP(-X))/2
Hyperbolic CosineCOSH(X)=(EXP(X)+EXP(-X))/2
Hyperbolic TangentTANH(X)=EXP(X)-EXP(-X))/+(EXP(X)+EXP(-X))
Hyperbolic SecantSECH(X)=2/(EXP(X)+EXP(-X))
Hyperbolic CosecantCSCH(X)=2/(EXP(X)-EXP(-X))
Hyperbolic CotangentCOTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1
Inverse Hyperbolic SineARCSINH(X)=LOG(X/SQR(X*X+1))
Inverse Hyperbolic CosineARCCOSH(X)=LOG(X+SQR(X*X-1))
Inverse Hyperbolic TangentARCTANH(X)=LOG((1+X)/(1-X))/2
Inverse Hyperbolic CosecantARCCSCH(X)=LOG(SGN(X)*SQR(X*X+1)+1)/X
Inverse Hyperbolic SecantARCSECH(X)=LOG(SQR(-X*X+1)+1)/X
Inverse Hyperbolic CotangentARCCOTH(X)=LOG((X+1)/(X-1))/2

No comments:

Post a Comment